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ABSTRACT: 
The amount of text data has been growing exponentially in recent years, giving rise to automatic 
information extraction methods that store text annotations in a database. The current state-of-the-
art structured prediction methods, however, are likely to contain errors and it’s important to be 
able to manage the overall uncertainty of the database. On the other hand, the advent of 
crowdsourcing has enabled humans to aid machine algorithms at scale. As part of this project we 
introduced pi-CASTLE , a system that optimizes and integrates human and machine computing 
as applied to a complex structured prediction problem involving conditional random fields 
(CRFs). We proposed strategies grounded in information theory to select a token subset, 
formulate questions for the crowd to label, and integrate these labelings back into the database 
using a method of constrained inference. On both a text segmentation task over academic 
citations and a named entity recognition task over tweets we showed an order of magnitude 
improvement in accuracy gain over baseline methods. 
	
  
INTRODUCTION:  
In recent years, there has been an explosion of unstructured text data from social networks 
like Twitter and Facebook, within enterprises via emails and digitized documents, and 
across the Web. Information extraction (IE) over large amounts of text is important for 
applications that depend on efficient search and analysis, such as question answering, trend 
analysis, and opinion mining. Various types of structured information that can be extracted 
include content annotations from bibliographic citations and entity relationships from news 
articles. 
  
Automatic information extraction can be viewed as a structured classification problem 
using statistical machine learning techniques. Given an input sentence x, the output label y 
has a rich internal structure. An example is a probabilistic sequence of an-notations for each 
word in the sentence. This approach of sequence learning has been the focus of much 
research into automatic IE for tasks such as text segmentation (TS) or named entity 
recognition (NER). The most common and state-of-the-art sequence model for these tasks 
is the linear-chain conditional random field (CRF) [Lafferty et al. 2001].  
 
Because of the inherent uncertainty and fallibility of many machine learning algorithms, 
recent work has turned to the incorporation of a human element for correcting errors or 
validating output of machine results. Crowdsourcing platforms like Amazon Mechanical 
Turk (AMT) have made it possible to utilize human computation efficiently and cheaply. 
Nevertheless, human annotations are still much more expensive and time-consuming 
compared to algorithmic labeling [Mozafari et al. 2014] and care must be taken to optimize 
the work administered to the crowd. 
 
Previous work in utilizing a hybrid of traditional and crowd computation for structured 
classification include entity resolution [Mozafari et al. 2014], web table [Fan et al. 2014] 
and ontology alignment [Sarasua et al. 2012], and probabilistic query processing [Ciceri et 
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al. 2016]. The main research challenges are optimizing data selection and question 
construction. Data selection involves targeting the most significant human contributions 
given a fixed budget of questions. Question construction is concerned with extracting the 
maximum possible information out of each question and is intimately connected to the data 
selection problem. 
 
There has been little work in combining human and machine computation for text 
classification due to the complexity of the structured prediction models. Data selection and 
question construction are more difficult because they have to reason with the internal 
structure of the probabilistic graphical models. 
 
In this paper, we build on existing work to develop an end-to-end system that not only 
tackles both of these selection problems, but fully integrates the crowdsourced response 
back into the machine model. Our system, pi-CASTLE is a crowd-assisted statistical 
machine learning (SML)-based IE system that uses a probabilistic database to execute, 
optimize, and integrate human and machine computation for improving text extraction and 
processing. pi-CASTLE initially employs a linear-chain CRF to annotate all input text data. 
In contrast to other IE systems, however, pi-CASTLE uses a probabilistic data model to 
store IE results and manage data cleaning. It has the ability to automatically query humans 
through the deployment of Amazon Mechanical Turk Human Intelligence Tasks (HITs) to 
correct the most uncertain and influential tokens and integrate their responses back into the 
data model. 
 
By allowing trained algorithms to do most of the work and focusing on humans only in the 
“last mile”, pi-CASTLE achieves an optimal balance between cost, speed, and accuracy for 
IE problems. We address three challenges in the design and implementation of pi-
CASTLE: the probabilistic data model, selection of uncertain entries, and integration of 
human corrections. 
 
First, in order to manage uncertainty associated with classification results and do data 
cleaning from within the database, a probabilistic data model and system is needed. We use 
the model described in [Wang et al. 2010b], storing both uncertain relations and 
probabilistic models as first class objects. We also implement user-defined functions 
(UDFs) for statistical inference, question selection, and uncertain data integration over this 
probabilistic data model to connect the SML and crowd components in pi-CASTLE.  
 
The data cleaning process entails automatically evaluating tokens in terms of their 
information value to the rest of the database and generating questions based on the highest 
scoring tokens to be pushed to AMT. Information value of each token is determined by a 
set of information functions that optimize different metrics over the database. pi-CASTLE 
uses concepts from information theory to select either the most uncertain tokens or the 
ones likely to have the most influence on other tokens. This is a technically challenging 
task as tokens, represented as nodes in a graphical model, are not independent, but adhere 
to the dependence properties modeled by the CRF. Optimal selection is N P P P -hard in 
general [Krause and Guestrin 2009] and we develop a set of approximate scoring functions. 
We choose to perform data cleaning at the to-ken level instead of the sentence or document 
level in order to exploit a phenomenon known as correction propagation [Culotta et al. 
2006], wherein influence can spread throughout the graphical model from a single 
observation. This allows pi-CASTLE to maximize the efficiency and value of the data 
cleaning process. 



	
  

	
  

pi-CASTLE is also able to construct questions in such a way that they maximize the impact 
on selected tokens. By exploiting redundancies in token usage on a global scale across 
documents, pi-CASTLE is able to map many tokens to a single question to achieve the 
greatest “bang for our buck”. As an example, if the crowd is able to correctly resolve the 
token Obama as a reference to a PERSON, then all entries containing Obama in a particular 
context can be updated to reflect this new information. This directly improves on many 
existing systems [Kondreddi et al. 2014] that correct at best a single entry at a time.  
 
The final design challenge is how to adequately handle evidence that has been collected 
from the crowd. Because every question posed costs financial and temporal re-sources, a 
central theme of pi-CASTLE is getting the most impact out of every question. Because in 
a relational learning task the output of one example may influence that of “nearby” 
examples, we develop a constrained inference framework that can use answers provided 
from the crowd to improve the results of other entries in the database. Understanding 
Obama is a person may improve the machine’s decision making on other related tokens 
such as Barack.  
 
One key application of this work is in knowledge transfer of models from one domain to another. 
Many pre-trained off-the-shelf models give poor results when applied to a new domain or data 
that follow a different distribution and are expensive or impossible to re-train. We demonstrate in 
our experiments pi-CASTLE’s ability to optimize the cost of this knowledge transfer process 
through appropriate balancing of the human and machine components. 
  
DETAILED  DESCRIPTION  OF  EXPERIMENT/METHOD:  

  
Figure 1: Architecture of the pi-CASTLE system. 

 
Figure 1 outlines the basic architecture of the pi-CASTLE system, which can be 
conceptualized into four main components: (1) CRF Extraction & Inference, (2) Question 
Selection, (3) HIT Management, and (4) Human/Machine Integration. The arrows chart 
the flow of data within and between different components. Overall, data flows through the 
four components in order. First, the CRF model performs automatic text extraction and 
labeling. Both the extractions themselves and their associated uncertainties are stored in a 
probabilistic database. Next, a set of questions are generated as some function of the data 
uncertainty and given budget. The HIT manager formulates and pushes these questions to 
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the crowd and retrieves the answers. Finally, the Turker answers are integrated back into 
the database as a set of constraints on the inference that improve the initial results.  
 
In this section we briefly outline each of the system’s main components and how they are 
related, as well as how data is specifically stored in the data model through the use of the 
running example in Figure 2. While we use existing techniques for (1) CRF 
Extraction/Inference and (3) HIT Management, we develop novel techniques for (2) 
Question Selection and (4) Human/Machine Integration in Section 5 and Section 6. 
 
CRF Extraction & Inference  
The initial machine approach to the structured prediction problem is handled by the 
components associated with the CRF, including pre-processing, feature extraction from the 
text, and model learning from a training set. The CRF model infers the hidden labels 
associated with each text token and stores the results in the database. 
 
Unstructured text is treated as a set of documents or text string 𝐷. Each document 𝑑 ∈ 𝐷 
has a substructure comprising a set of tokens 𝑡&', where 𝑖 ∈ {1, … , 𝑁} and N is the length 
of the string (document). For efficient and persistent data storage and retrieval, we store 
the tokens in a probabilistic database, adopting and expanding upon the data model 
outlined in [Wang et al. 2010a]. Each unique occurrence of a token, identified by a text-
string ID (strID) and position (pos), is stored as a record in the relational table 
TOKENTBL. A TOKENTBL has the following schema:  

TOKENTBL(strID, pos, token, labelp) 
 
An example is shown in Figure 2. 
 

	
  
Fig. 2. An example CRF model and the associated storage format in the database. Observed 
nodes correspond to token values. Hidden nodes are probabilistic labels that contain a 
distribution over the label space. 
 
Question Selection  
The main contribution of pi-CASTLE is the ability to take an uncertain database as 
constructed using the CRF components and automatically improve it by pinpointing likely 
errors. In order to work within the constraints of a fixed budget, we need to select the most 
information-dense fields to correct. As we describe in more detail later in the paper, the 
relational structure of our model enables token inferences to affect other tokens through 
their dependencies. Additionally, highly redundant tokens have common contextual 
patterns across documents that allow fields to be mapped using the same human inferences.  

strID pos token label

… … …

1 7 Evolu�onary

1 8 Computa�on

1 9 Cyril

1 10 Fonlupt

1 11 Denis

1 12 Robilliard

… … …

H=labels

O=tokens

Evolu�onary Computa�on Cyril Fonlupt Denis Robilliard



	
  

	
  

Using these two notions, we develop a way to score each token in terms of its information 
density and select those most likely to have the strongest improvement on the database. 
Figure 4 shows a table view that includes the maximum likelihood label for each token and 
a score based on some scoring function. The goal of the Selection module is to evaluate 
tokens in such a way that their correction has a maximum influence on the database after 
integration.  
 
In the discussion we examine two different optimization functions on the database and the 
in-formation functions that derive from them. One optimizes the reduction in uncertainty 
and suggests picking those tokens with the highest marginal entropy. The other maximizes 
the influence between the crowdsourced fields and the remaining fields and results in a 
mutual information calculation between tokens and their neighbors. In either case, we 
incorporate clustering into the scoring function so the most common errors have a higher 
weight in their selection and individual questions can be applied to many tokens 
simultaneously. 
 
HIT Management  
The HIT Management component has the responsibility of taking selected tokens, con-
verting those tokens into questions in the form of Human Intelligence Tasks (HITs), and 
posting them onto Amazon Mechanical Turk. Part of the focus of pi-CASTLE is on 
reducing the problem of annotating an entire text string to annotating only specific to-kens 
at a time. The simplicity of this task avoids unneeded redundancy and translates into a 
simple question interface less prone to human-error.  
 
An example interface is shown in Figure 3. The entire text document (in this case a citation) 
is shown with the query token bolded. Users select from the set of all la-bels the one they 
believe belongs to the bolded token. The brevity of each question allows bundling of 
multiple token annotations into a single HIT. For the time and cost of labeling a single 
unstructured text document from scratch, pi-CASTLE is able to acquire labels to the same 
number of super information-dense tokens which will have a much larger impact on 
improving the quality of the database. 

 
Fig. 3. Sample Mechanical Turk HIT Interface  
 
Specific details of the AMT marketplace such as the price, length of posting, and number 
of Turkers assigned to each HIT are outside the focus of this paper. In practice, they would 
be set according to the constraints of the user. 
 
 
 

The #gothic Daily is out – read this Twi�er newspaper on h�p://bit.ly/aQOoSP (22 contribu"ons today)
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Human/Machine Integration  
The final component takes the human response to selected questions, aggregates their 
results, and integrates them into the final database. pi-CASTLE is agnostic to the method 
by which crowd results may be combined and any method which derives a single answer 
from a pool of possibilities may be employed. We found majority voting worked well 
enough to be useful due to high worker ability on text annotation tasks. For more difficult 
tasks with variable worker ability, pi-CASTLE is modular enough to utilize any number 
of quality control mechanisms as found in [Sheshadri and Lease 2013]  
 
The key insight that distinguishes pi-CASTLE from other crowdsourced data cleaning 
systems is the treatment of new evidence as observed variables in the conditional random 
field inference process. CRF Inference finds a global best-fit path through the label space 
for each document. Fixing certain fields to the crowdsourced label con-strains the total 
label space and has a direct influence on tokens in the neighborhood of the observed one. 
The Constraints module stores the crowdsourced evidence and is used in subsequent 
inference passes over the data. The specific details of constrained CRF inference are 
detailed in Section 6.  
 
Figure 4 shows a scenario in which identifying and correcting one node from a Title to an 
Author allows the machine to infer that the following token is also likely to be an Author. 
pi-CASTLE chooses selections wisely so as to maximize this degree of influence. 
 

 	
  
Fig. 4. Database view of the process of data selection and integration. An information 
function maps each token to a selection score. Here, because “Cyril” is an uncommon 
name, the machine confuses it as a Title. It has the highest scoring information function so 
it’s sent to the crowd for labeling where it’s confirmed to be an Author. Constrained 
inference propagates this information, changing “Fonlupt” to an Author as well 
  
RESULTS:   
In the following section we demonstrate the effectiveness of our approach applied to a text 
segmentation task and named entity recognition (NER) task. Given a semi-structured 
document like an academic citation string, text segmentation is a problem concerned with 
partitioning the string into different classes. This information can be used to build a 
database of records that allow for efficient search and analysis. We also test a NER task 
where the goal is to extract entities such as people, places, and organizations from tweets. 
NER can be distilled to an annotation task where every token is labeled as a specific entity 
type or else Other. NER is a common preprocessing step to higher-order semantic 
algorithms.  
 

strID pos token max(label) Φ

… … … … …

1 7 Evolu�onary TITLE 0.1

1 8 Computa�on TITLE 0.1

1 9 Cyril TITLE 1.5

1 10 Fonlupt TITLE 1.3

1 11 Denis AUTHOR 0.3

1 12 Robilliard AUTHOR 0.1

… … … … …

strID pos token max(label) Φ

… … … … …

1 7 Evolu�onary TITLE 0.1

1 8 Computa�on TITLE 0.1

1 9 Cyril AUTHOR 0

1 10 Fonlupt AUTHOR 0.1

1 11 Denis AUTHOR 0.1

1 12 Robilliard AUTHOR 0.1

… … … … …

Crowd

Constrained

Inference



	
  

	
  

In order to fully show how our methods perform when the machine learning task is only 
partially accurate, we apply our training and testing sets to different datasets. This is a 
common practice in knowledge and learning transfer as well as in practical applications 
where vendors are required to use off-the-shelf models that are difficult or expensive to re-
train. Our results do not apply only in this domain and could just as easily be applied to 
standard structured prediction tasks. 
 
Our pipeline consists of two key phases for which we provide experimental evidence of 
their utility. The first phase involves selection of information-dense tokens that would be 
sent to the crowd to answer. We compare our entropy and mutual information 
approximation along with other selection baselines. In the integration phase the true label 
for selected tokens is applied and constrained inference is performed. By comparing 
directly to the unconstrained selection phase experiments, we demonstrate the performance 
gain coming directly from the influence of selected tokens.  
 
In the following sections we describe the experimental setup and datasets in more detail before 
discussing the individual experiments. 
 
Setup and Datasets  
For training in the text segmentation task, we used the currently popular UMass citation 
dataset [Anzaroot and McCallum 2013]. State-of-the-art citation extraction has typically 
used the CORA dataset, which is much smaller and is being replaced by this current 
dataset. It contains 1800 bibliographic citations from physics, mathematics, computer 
science, and computational biology domains pulled from Arxiv.org and is fully-labeled 
with 32 fine-grained (FIRST NAME, LAST NAME, TITLE, etc.) fields.  
 
The test set consists of 7K citations comprising 242K tokens extracted from the DBLP2 
database which contains primarily computer science papers. Each citation is represented 
as a row in the database with columns for the seven classes: TITLE, AUTHOR, 
CONFERENCE, SERIES, PROCEEDINGS, ISBN, and YEAR. We reproduced the 
original citation by concatenating all of the string text together as a single semi-structured 
document. From this we generated a training set and testing set based on a 50% split. 
 
We used the IITB CRF3 model for training and testing, which is heavily engineered to 
represent the state-of-the-art in the text segmentation task. The tokenizer it comes with 
includes commas and all numbers mapped to a single “DIGIT” token in the tokenization. 
We filtered these out for scoring.  
 
Both UMass and DBLP sets contain citations from different domains and are structured in 
many different ways with differing pieces of information. While DBLP is more course than 
UMass, each of its labels maps onto either a direct label or set of labels in UMass. We 
computed this mapping in advance and translated the field sets prior to computing F1 
scores.  
For the named entity recognition task, we used the off-the-shelf Stanford NER4 parser. 
This is the current state-of-the-art in NER and used widely throughout the literature. The 
model contains four classes (PERSON, LOCATION, ORGANIZATION, or OTHER) and 
is trained on the CoNLL 2003 shared task, which itself is a set of news wire articles from 
the Reuters corpus. This model performs best in its native news wire domain, but its 
commonly applied to other domains as well. 
 



	
  

	
  

We wanted to see how the Stanford NER parser would apply to a Twitter domain, using 
the TwitterNLP5 dataset, which consists of 2400 unstructured tweets comprising 34K total 
tokens. TwitterNLP contains many novel entities not found in the Stan-ford training set. In 
addition, the variability in punctuation and capitalization makes Twitter a very difficult 
domain for NER using purely machine learning. The original TwitterNLP included 
extraneous classes like Product or TV-Show, but we converted these to Other. 
 
The goal of the selection problem is to select those tokens that are (1) the most likely to 
resolve errors by their own correction and (2) the most likely to improve incorrect 
neighbors through inference propagation. We evaluate by computing F1 scores on a token-
by-token basis, where F1 is the harmonic mean of precision and recall. Precision is the ratio 
of correct tokens for a class to all predicted tokens for that class. Recall is the ratio of correct 
tokens to all true tokens for that class. Because both applications are instances of a multi-
class classification problem, we use the micro-averaged F1. This uses the sums of all true 
positives, false positives, and true negatives to compute a final F1. Given a budget of K 
questions, we seek to maximize the F1 gain from an initial machine-learning only baseline 
we can achieve with each question. Experiments show F1 increases incrementally as 
questions are posed.  
 
The experiments that follow contain both synthetic and real crowdsourced data. The 
synthetic data is designed to test the selection and integration mechanisms which are the 
focus of this paper independent of crowdsourcing uncertainty. We do this by substituting 
the true field in place of any selected tokens. It would also be untenable attempt as many 
permutations of the experiments as we require using only real data. The use of synthetic 
oracle data allows us to significantly scale up the experiments. We include a small set of 
end-to-end experiments where we crowdsourced the answers using Amazon Mechanical 
Turk to verify the ability of the crowd to perform this task. 
 
Selection Experiments  
For all experiments, we perform a filtering step prior to clustering or selection that reduces 
the pool of available tokens. For each citation in the DBLP dataset or tweet in the Twitter 
dataset, we select either the highest Mutual Information or Entropy token depending on the 
experiment being considered. For our random baseline, we randomly select a token from 
each document. This reduces the DBLP pool to 7000 tokens and the Twitter pool to 2400 
tokens. Then we either select or cluster and select depending on the experiment.  
 
Figures 5 and 6 show how the F1 scores are improved using different selection metrics. 
The plots are differentiated by permutations of dataset, clustering, and con-straining. Figure 
10 shows experimental results for Umass to DBLP, while 11 shows results for newswire to 
Twitter. The initial F1 without any human correction is 33:8% for training on Umass and 
testing on DBLP, while for training on CoNLL 2003 and testing on TwitterNLP the initial 
F1 is 56:6%. While these scores may seem low, this is standard for a highly difficult 
knowledge transfer task and is the perfect application for pi-CASTLE to exploit machines 
performing one-half or one-third the task while humans fill in the gaps. The x-axis shows 
how the total system F1 increases for every question we ask. For unclustered experiments, 
this corresponds to only a single token correction in the entire dataset. For clustered 
experiments, each question maps on a cluster of tokens, all of whom are given the 
crowdsourced label. 
 



	
  

	
  

The baseline for comparison without clustering is randomly selecting tokens (Rand) for 
improvement, bypassing the filtering and ranking steps. If we perform clustering, we 
choose a different baseline (Size that randomly selects a token from each citation (i.e. 
filtering) and then clusters them and ranks them according to size. This generates a much 
stronger baseline and directly compares a baseline data-centric algorithm with our 
information-theoretic algorithms. Ent selects tokens whose predicted marginal label 
distribution has the highest entropy in the filtering step and ranks them either by token 
entropy or total cluster entropy. Similarly, MI selects those tokens with the highest mutual 
information approximation as discussed in Section 5 and clusters and ranks in the same 
fashion.  
 
The size of the DBLP test set is 242k tokens and without clustering, we’re only at liberty 
to correct one token at a time per question asked. This results in mostly flat plots that don’t 
at all differ by constraining. Clustering without constraining provides a marginal increase 
for both information-theoretic methods. Constraining the selected clusters, however, 
provides the largest increase across the board for all selection mechanisms. The 
performance of random is still quite good because when the F1 score is as poor as it is, 
even random corrections will result in some common incorrect to-kens being clustered and 
corrected. Entropy outperforms it by selecting tokens more likely to be incorrect and result 
in score increases upon correction. Mutual Information performs strongest here because it 
selects those tokens most likely to improve other tokens. 	
  
 
The performance on the Twitter test set is a bit closer for all plots compared to DBLP. 
There are two reasons for this. First, named entities appear more often as singleton 
mentions over a single token. This reduces the effect of constraining. Second, the in-creased 
variety among Twitter compared to semi-supervised citations leads to a reduction in the 
impact of clustering. Nevertheless, not performing any type of clustering or constraining is 
still the weakest across the board, while performing both clustering and constraining leads 
to the overall strongest performance. Selecting by entropy is best performer without 
constraining, but Mutual Information edges out slightly when constrained inference is 
performed. In all cases, the information-theoretic methods significantly outperform the 
random baselines.  
 
There are a couple additional observations on both sets of plots. In the Twitter test-ing set, 
some of the graphs appear to dip despite getting a ground truth correction. There are two 
additional sources of error our methods introduce into the problem. One comes from errors 
in clustering, where incorrectly clustered tokens receive the same la-bel in error. Another 
comes from the constrained inference process, where neighboring tokens correctly labeled 
by chance are incorrectly labeled after applying corrections. Our experiments show both of 
these scenarios are rare and the benefits of clustering and constraining far outweigh the 
possible negative effects.  
 
Of particular note is the small number of questions. For the DBLP set at 242k to-kens, 200 
questions represents only 0:1% of the whole dataset and would cost only about $50 on 
Amazon Mechanical Turk. And yet using a Mutual Information frame-work with some 
question clustering we’re able to improve the F1 score from 34% to 43%, a gain of nearly 
33% of the original. This is much more efficient than selecting at the citation level for 
labeling, which requires more redundancy and is unable to take advantage of clustering. By 
allowing the machine to do most of the work, we can make the most necessary 



	
  

	
  

improvements with a small number of questions. This shows that iterating on this 
framework with batches of K questions would lead to higher performance with lowered 
costs than a higher granularity labeling process. 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
Fig. 5. F1 score increases for Umass training and DBLP testing. 
 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
Fig. 6. F1 score increases for newswire training and Twitter testing. 



	
  

	
  

  
DISCUSSION: (> 700 words with no upper limit)  
In this section we formalize the question of optimally posing questions to the crowd by 
analyzing two key selection strategies in the context of which global optimization. 
functions they minimize. This leads us to strategies for either maximizing the uncertainty 
reduction of the system or the influence of the selected nodes. To maximize the information 
density of each question, we describe a contextual clustering technique that fold multiple 
uncertain examples into a single question. 
 
A general probabilistic graph can be described simply as tuple 𝐺	
   = 	
   (𝑉; 	
  𝐸; 	
  𝑃	
  ) that 
consists of nodes 𝑉, edges 𝐸, and a probability distribution 𝑃 over those nodes and edges. 
In general, P may denote either a directed Bayesian network or an undirected Markov 
random field. Assume the V nodes are partitioned into a set of observed nodes O and hidden 
nodes H such that 𝑂 ∪ 𝐻	
   = 	
  𝑉. By virtue of having learned a model, there exists some P 
that can be used to make predictions on the distribution of values of 𝐻. Assume also that 
we are given a budget of K observations to make on the hidden nodes, after which we have 
a new partition between the observed hidden nodes Y, where |𝑌| 	
  = 	
  𝐾, and the still 
unobserved hidden nodes 𝑋, such that 𝑋 ∪ 𝑌	
   = 	
  𝐻. While this paper focuses on a specific 
probabilistic graph known as a CRF, the problem we’re posing is a more general one 
applied to any probabilistic graph. 
 
Question Selection Problem: Given a budget of |𝑌| 	
  = 	
  𝐾 questions, how do we pose 
questions to the observer in such a way that the resulting observations 𝑌 minimize the 
prediction error on the remaining hidden nodes 𝑋? 
 
The mapping of questions to observable nodes need not be one-to-one and the problem 
decomposes into using questions to trade off both the largest mapping from a question to 
many nodes and the individual information density of those nodes. The former is related to 
the content and redundancy of connected observations and the latter deeply related to the 
structure of the graph.  
 
The Question Selection Problem is similar to that found in active learning where select 
examples are chosen from a pool of unlabeled data to be annotated based on some querying 
strategy. Traditionally these examples are independently and identically distributed (IID) 
and take no account of the causal influence of one example’s label on another. While active 
learning has been applied to the structure prediction domain [Settles and Craven 2008; 
Cheng et al. 2008], the examples primarily consist of individual independent graphs and in 
each case the entire graph is labeled. This reduces the problem to labeling a set of IID 
examples. The Question Selection Problem is concerned with labeling individual hidden 
nodes in a larger graph structure. Given that most examples contain sparse labeling errors, 
we hope to achieve maximum efficiency in terms of financial and temporal cost while also 
being more amenable to AMT’s micro-task framework. 
Our approach to solving the Question Selection Problem is to phrase it as an optimization 
function 𝑔(𝑋; 	
  𝑌; 	
  𝑂) over the graph. From the collection of hidden nodes H, we seek to 
find the set of new observations Y that maximizes 𝑔(𝑋; 	
  𝑌; 	
  𝑂). 
 

𝑌∗ = 𝑎𝑟𝑔max
F
𝑔(𝑋, 𝑌, 𝑂) 

 
We discuss two possible optimization functions in the succeeding sections and approximate 
solutions to solving them. A key requirement in scaling to large graphs is the ability to 



	
  

	
  

evaluate and rank nodes independently by some information function such that the optimal 
𝑌 are just the Top-k scoring nodes 𝑌G . These information functions have been previously 
published as heuristics in [Goldberg et al. 2013] and in this paper we put them on a more 
sound theoretical footing. 
 
Our primary purpose is to establish and make progress on the Question Selection Problem 
as it pertains to text-based linear-chain CRFs which have wide applicability in natural 
language processing applications. 
 
5.2. Uncertainty Reduction  
Most classifiers give as output both a class prediction and confidence score. The 
confidence score measures how difficult the machine finds the problem to be and 
subsequently how confident it is in its output. It is reasonable to assume then that for 
properly trained classifiers there is some correlation between prediction accuracy and 
confidence. For structured prediction problems, the confidence is typically re-normalized 
as a probability distribution over all possible joint distributions of the hidden nodes. One 
strategy for improving prediction performance is to try to reduce the uncertainty associated 
with the output distribution.  
 
Uncertainty can be modeled using entropy. The entropy of a distribution of possible 
outputs T is defined as 
 

𝐻 𝑇 = − 𝑃 𝑡 log 𝑃(𝑡)
M∈N

 

 
When the distribution is peaked towards some particular output value t we say the system 
has low uncertainty and is confident in that t is the correct output. If the distribution is 
spread over a wider range of possible values, the system is characterized as having high 
uncertainty. 
 
After the initial machine prediction phase, the system of hidden nodes 𝐻	
   = 	
  𝑋 ∪ 𝑌 has 
some associated uncertainty 𝐻(𝑋; 	
  𝑌|𝑂). After selecting 𝑌 nodes for observation, the 
remaining uncertainty is 𝐻(𝑋|𝑌; 	
  𝑂). One way of minimizing final prediction er-ror is to 
observe those nodes that give the largest reduction between 𝐻(𝑋; 	
  𝑌|𝑂) and 𝐻(𝑋|𝑌; 	
  𝑂). 
Thus the optimization function is  
 

𝑔 𝑋, 𝑌, 𝑂 = 𝐻 𝑋, 𝑌 𝑂 − 𝐻(𝑋|𝑌, 𝑂) 
 
Using the identity 
 

𝐻 𝑋, 𝑌 𝑂 = 𝐻 𝑌 𝑂 + 𝐻(𝑋|𝑌, 𝑂) 
 
this uncertainty reduction is equivalent to maximizing the marginal entropy of the selected 
nodes 𝐻(𝑌|𝑂). Solving this problem exactly requires calculating the joint distribution of 
all possible subsets of the budget size K. As a simplifying assumption, we relax the notion 
of connectivity between nodes.  
 
For a set of independent random variables Y1,…,YK , the entropy can be written as the sum 
of the individual marginal entropies  



	
  

	
  

 
𝐻 𝑌P,… , 𝑌G|𝑂 = 𝐻 𝑌P 𝑂 +⋯+𝐻(𝑌G|𝑂) 

 
Under this independence assumption, maximization of 𝐻 𝑌 𝑂  is equivalent to selecting 
the individual 𝐻(𝑌G |𝑂) that have the largest individual marginal entropies given the 
observed nodes. This results in an information function 
 

𝜙STN 𝑌G = 𝐻(𝑌G|𝑂) 
  
We refer to this information function as the token entropy.  
 
Token entropy has appeared elsewhere in the literature where it is referred to as uncertainty 
sampling [Lewis and Gale 1994]. Token entropy is ideal for rooting out specific individual 
tokens that the machine has difficulty classifying. The fundamental shortcoming is that for 
a structured prediction problem, it’s unable to take the data’s connectivity into account. 
Even without relaxing the dependency assumptions, maximization of 𝐻(𝑌|𝑂) in no way 
takes into account how the newly observed nodes Yare related to the still-unobserved nodes 
X. In the next section we introduce a novel way of incorporating token dependencies into 
the Question Selection Problem using the concept of mutual information. 
 
Influence Maximization  
Due to the dependence properties of certain nodes in the graph on other nodes, an ideal 
selection strategy would take into account the influence an observation has on its 
surrounding neighborhood. Mutual information (MI) is a pairwise metric between random 
variables that quantifies how much the uncertainty of one is reduced when the other is 
observed.  

 
Specifically, for two sets of random variables 𝑋 and 𝑌, we can define the mutual 
information between them in terms of their entropies as   
 

𝐼 𝑋; 𝑌 𝑂 = 𝐻 𝑋 𝑂 + 𝐻 𝑌 𝑂 − 𝐻(𝑋, 𝑌|𝑂) 
 

It represents the difference between the joint entropy 𝐻(𝑋; 	
  𝑌|𝑂) and the individual 
entropies 𝐻(𝑋|𝑂) and 𝐻(𝑌|𝑂). Random variables that are highly uncorrelated will have a 
joint entropy equivalent to the sum of their entropies and thus zero information. On the 
other hand, highly correlated variables will have large degrees of mutual information.  

 
In terms of the Question Selection Problem, we’d like to select those variables Y which, 
once observed, have the largest “effect” on the remaining variables X. The impact of 
observation on surrounding random variables was discussed in Section 4 in reference to the 
Viterbi algorithm since each label depends on the labels of its neighbors. Thus we are 
concerned with optimizing the difference in uncertainty between the variables X initially 
and those same variables conditioned on the selected variables Y, given the original 
observed variables O. The optimization function for this strategy becomes  

 
𝑔 𝑋, 𝑌, 𝑂 = 𝐻 𝑋 𝑂 − 𝐻(𝑋|𝑌, 𝑂) 

 
Using the identity for conditional entropy 
 

𝐻 𝑋 𝑌, 𝑂 = 𝐻 𝑋, 𝑌 𝑂 − 𝐻(𝑌|𝑂) 



	
  

	
  

 
as well as the definition of MI above, it’s clear that this is precisely equivalent to optimizing 
the mutual information between the newly observed variables Y and remaining variables 
X.  
 
This problem is in some sense “harder” than the uncertainty reduction problem of the 
previous section. As before, we have to calculate all possible partitions of variables into X 
and Y and calculate marginal entropies. Here, we also have mutual entropies to calculate 
and the problem cannot be reduced by relaxing dependency properties. In fact, if we do 
assume independence we lose the entire ability to reason using mutual information.  
 
Instead we rely on a different approximation strategy, exploiting the structural properties of the 
graph. Given that all hidden nodes are composed as a linear-chain, the bulk of influence a node 
has is purely to its two neighbors. This is due to the Data Processing Inequality [Kinney and 
Atwal 2014], which says states that information along a Markov chain can only decrease. As a 
first-order approximation we consider only this influence, for each node calculating the mutual 
information between it and its neighbors:  
 

𝑔 𝑋, 𝑌, 𝑂 = 𝐼 𝑌G; 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑌G 𝑂
F\∈F

 

=	
   𝐼 𝑌G, 𝑙𝑒𝑓𝑡 𝑌G 𝑂 + 𝑌G, 𝑟𝑖𝑔ℎ𝑡 𝑌G 𝑂
F\∈F

 

   
 
where 𝑙𝑒𝑓𝑡(𝑌𝑘) refers to the neighbor preceding 𝑌k in the chain and 𝑟𝑖𝑔ℎ𝑡(𝑌𝑘) refers to 
the neighbor succeeding it. This results in a simple information function define by mutual 
information:  
 

𝜙`a 𝑌G = 𝑌G, 𝑙𝑒𝑓𝑡 𝑌G 𝑂 + 𝑌G, 𝑟𝑖𝑔ℎ𝑡 𝑌G 𝑂  
 
Mutual information can be useful in determining the impact a node’s observation has on 
other nodes within an individual sequence, but tells us nothing about the distribution of 
tokens across all documents. If we want to optimize our selection strategy, especially for a 
batched selection process, we should additionally incorporate a token’s frequency and its 
influence/uncertainty. 
 
Clustering by Information Density  
In addition to selecting tokens that exhibit either the highest uncertainty or largest 
influence, we’d like to construct questions in such a way that a single question can have 
maximum impact on the whole of the database. Equivalently, we’d like the questions posed 
to be varied enough that we’re not wasting financial resources asking the same question 
twice. A data-driven solution is to utilize simple clustering to group tokens together and 
map individual questions onto entire clusters instead of single tokens. As we show in our 
experiments, in tasks such as text segmentation and named entity recognition there are 
many redundant tokens that produce clusters of large size.  
 
Our strategy for clustering is to collect tokens that should be labeled the same based on label 
criteria for our model. Since the CRF model contains features 𝐹c(𝐻adP	
  ; 	
  𝐻a; 	
  𝑂a) that depend on 



	
  

	
  

observations at each token and their labeling neighborhood, we utilize the same aspects as a 
means for clustering. The label trigram method operates after the initial machine prediction and 
clusters together tokens Hi that that have the same previous and succeeding prediction labels (Hi-1 
; Hi+1) as well as the same observation token Oi. Though the features are sequential and don’t 
consider succeeding tokens Hi+1), we include it in the clustering to differentiate tokens further 
and reduce possible errors. An example is shown in Figure 6 which clusters five documents into 
two clusters based on their appearing in either the TITLE or the SERIES as compared to a 
typical token trigram approach. Clustering algorithms are furthered compared with experimental 
results in [Goldberg et al. 2013] with the conclusion that label trigrams produce superior results.  
 
When tokens are selected for crowdsourcing, the entire context of the token is dis-played 
to the user. Since each item in a cluster has its own independent context, we select a specific 
token at random to be the representative token for that cluster. When mapping clusters to 
questions, the representative token is the one specifically used to provide context and to 
formulate the question. When retrieving the answer to a question, the observed label is 
applied to all tokens in the representative token’s cluster. The effect of clustering and 
constrained inference influences many tokens with only a single question.  
 
The final concern is how to map the selection strategies introduced earlier in this section 
onto entire clusters. We looked at a number of strategies for aggregating ENT and MI including 
taking the max information function in the cluster (MAX), taking the average information 
function (AVG), and taking the sum of all information functions (SUM). Since clusters are 
unevenly distributed in size, we found a metric that takes into account cluster size to be 
preferable to one that does not. Therefore, taking the sum of all information functions in a 
cluster reflects both the high information redundancy (size of the cluster) and high 
uncertainty/influence (value of information function) in each question. 
  

ALGORITHM 1: Selection algorithm.	
  	
  	
  
input : Set of all tokens T	
  	
  
output: Ranked set C of maximum information clusters	
  	
  

1   Initialize selected token set S;  
2  Initialize cluster set C; 
3  foreach t 2  T do  

//Apply  information  function; 	
  
4   t:info(t); 

//Clustering;	
  
5   Add t to cluster c(t;;  t:label;;  t:prev label;;  t:post label); 
6             if size(c) ==  1 then 	
  
	
   	
   c:rep token	
   t;	
  	
  	
  

8   c:totalInfo      c:totalInfo  +  t:info; 	
  
9   SORT clusters 𝑐 ∈ 	
  𝐶 by c.totalInfoGain; 	
  

 
 
Algorithm 1 reviews the basic selection strategy for applying information functions to 
clusters and ranking them to determine the Top-k questions. We first iterate through all 
tokens in an initial pass applying the requisite information function. Since both ENT and MI 
employ simple approximate entropy calculations, they can be computed in constant time 
with respect to the token space. During the same iteration pass, to-kens are hashed to a 
cluster according to the 4-tuple (Hi 1; Hi; Hi+1; Oi). These correspond to the token and its 
label as well as its neighbors’ labels. The first token put into a cluster is mad made the 
representative token and all subsequent tokens contribute to a running sum of the 
information function associated with each cluster. Finally, the clusters are ordered by their 
total information functions and selected based on the budget to be mapped into questions.
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ANTICIPATED  IMPACT:  
 
We have begun developing and applying our methods to more general graphs in probabilistic 
knowledge base completion. 
 
There has been a vast amount of research in generating structured knowledge bases from 
unstructured and semi-structure data on the web. This has produced several large-scale KBs able 
such as YAGO, NELL, and OpenIE able to store vast amounts of data for querying and analysis. 
Limitations of the extraction process are such that only information explicitly written down has 
the potential to be extracted and stored in the KB. There is a wealth of untapped implicit 
information and higher order knowledge that can be used to augment and extend existing KBs.  
 
Figuring out this additional information is known as the Knowledge Expansion problem and the 
higher order information is typically in the form of learned inference rules. Application of these 
rules to an existing KB results in new information that can be added to the KB. This information 
can be noisy, owing to uncertainty in both the rule itself and the approximation scheme. 
Uncertainty in the rule comes from applying soft rules that may only hold or be broken in certain 
situations. Uncertainty in the approximation scheme depends on whether top-down or bottom-up 
inference is being applied. Top-down inference resolves all possible facts as random variables 
and solves a constrained optimization problem using MCMC, which produces only approximate 
solutions for large graphs. Bottom-up inference requires local application of the inference rules, 
adding new facts in iterative batches. Such a scheme is unable to take into account more global 
properties of the inference like functional constraints. The compounding of such probabilistic 
errors results in low precision on the final set of returned facts.  
 
The availability of human feedback enables the correction of some of these errors at a large 
financial and temporal cost typical of human input. This cost can be controlled and minimized if 
human feedback is used efficiently to target the areas of the KBs most need of correcting while 
allowing machine algorithms to infer what remains. If the knowledge base is modeled as a graph 
with nodes representing facts and edges representing inference rules, the problem amounts to 
selecting an optimal set of nodes query nodes to submit for human feedback. 
 
This human-machine hybridization is designed to raise inference precision and control the 
propagation of errors in the knowledge graph inference at near-optimal cost. Using the theory of 
Value of Information in probabilistic graphical models, we can select those facts whose 
knowledge gives the largest return with the respect to the remaining state of the knowledge 
graph. Seminal work has already been done in deriving optimal or near-optimal algorithms and 
performance guarantees for both chain and general graphical models. We foresee extending this 
theory into the domain of probabilistic knowledge graphs. 
 
Following notation similar to Chen et al. (2014), a probabilistic knowledge base is defined as a 
5-tuple 𝛤 = (𝐸, 𝐶, 𝑅}, 𝛱, 𝐿)	
  of entities, classes, relations, probabilistic facts, and rules. Entities 𝐸 
are real-world objects such as people, locations, and things. Each entity 𝑒 ∈ 	
  𝐸 can belong to one 
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or more classes or types 𝑇. It's natural to think of the set of classes 𝐶 as a subset of the entities 𝐸. 
Entities have relationships 𝑟 ∈ 	
  𝑅 with other entities, which define pairwise relations 𝑟(𝑒&, 𝑒k) 
between entities. An entity-level graph has nodes representing entities 𝐸 and edges representing 
relations 𝑅. A fact 𝐹 is a tuple	
  𝑟(𝑒&, 𝑒k)  where 𝑟 𝑒&, 𝑒k ∈ 𝑅, 𝑒& ∈ 𝐸	
  , and 𝑒k ∈ 𝐸. 
 
In a probabilistic knowledge base, facts are weighted by probabilities corresponding to their 
perceived veracity. A probabilistic fact 𝜋 = 	
   (𝐹, 𝑝) contains a fact tuple and its associated 
probability 𝑝 ∈ 	
   [0,1].	
  Higher order knowledge about the facts are encoded in a set of weighted 
inference rules 𝐿. For the purposes of this paper, we examine two types of inference rules 𝑅 of 
length 2 and length 3: 
 

𝐹& → 𝐹k (1) 
𝐹&	
  &	
  	
  𝐹k → 𝐹G	
   (2) 

 
here each 𝐹 stands for a fact or its negation. A soft or probabilistic inference rule 𝑙 = 𝑅,𝑤 ∈ 	
  𝐿 
has an associated weight that determines how likely that rule is to hold. Inference over the 
knowledge base uses the probabilistic rule to generate additional probabilistic facts. A fact-level 
graph represents individual facts as nodes and the rules between them as factors in an undirected 
factor graph. Eq. 1is modeled using pairwise factors and Eq 2 uses 3-way factors. 
 
Inference rules may be applied in a top-down or bottom-up formulation. The top-down method 
enumerates all possible new triplets of entities and relations and samples from their distribution 
using techniques like MCMC to reduce the number of violated rules. Top-down solutions are 
limited by the convergence speed, which depends on the size of the graph, and can produce only 
approximate noisy solutions. The bottom-up or iterative method expands the graph by iterative 
application of the inference rules, also known as rule propagation. For each satisfied rule on the 
left hand side of Eqs, 1 or 2, the fact on the right hand side is added to the KB with some 
probability. The rules are thus used to propagate or grow the graph with new facts. State-of-the-
art rule propagation methods use logistic regression to combine the input of multiple rules and 
output a posterior probability of the inferred fact. The iterative method scales better to larger data 
sets than the top-down method and will be the focus of this proposal.  
 
 
Both ways of performing inference introduce errors into the knowledge graph. Because rules are 
probabilistic, they will not always apply and an inference error in one fact can propagate itself to 
produce noise in the rest of the graph. 
 
An example of this error propagation is depicted in the fact-level graph in Figure 7. The graph 
reasons about basic facts over people Kevin Murphy and Xin Luna Dong and their institutions 
and locations. Edges connecting nodes are factors representing two different rules. The first says 
that two authors are likely to work at the same institution. The second that people are likely have 
lived where they attended school. These rules are soft and are only true with some probability. It 
is in fact true that despite being co-authors, Kevin Murphy  and Xin Luna Dong did not attend 
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the same institution. In addition to providing this incorrect fact, the error propagates to 
incorrectly infer where Xin Luna Dong has lived as well. 
 

 
Figure 7: Example Fact-level Knowledge Graph. Nodes represent facts and edges higher-order 
rules over those facts. Because rules are probabilistic, they may contain errors that propagate 
through the graph. In this example, the two shaded nodes represent incorrectly inferred facts. 
 
In order to stem the propagation of errors, we'd like utilize correction via human feedback. An 
inference algorithm is constrained only by the knowledge in its own database, but humans can 
retrieve additional information to improve prediction accuracy. While it's an inefficient use of 
resources to have a human verify every possible true or false fact in a knowledge base, it is 
possible to guide labeling to those facts that are deemed most important by some metric. In 
general, given a knowledge graph 𝐺 = {𝑉, 𝐸}, we'd like to select a subset of those facts 𝐴 ∈ 𝑉 
that provide the greatest overall benefit, whether that be current prediction accuracy or future 
performance of the inference algorithm. 
 
Each possible selection of 𝐴 derives a certain reward score 𝑅(𝐴), where 𝑅 is a set function that 
maps each subset 𝐴 into a real number and represents the optimization function to maximize. 
Presumably each selection also incurs some cost of observation 𝑐 𝐴  that can be measured in 
terms of temporal or financial resources. For example, a set of facts containing many of the same 
entities will take less time to verify than a large set of disparate facts. There may also be different 
ways of asking questions that map onto node observations that incur different costs. 
 
Using this notion of reward and cost, the overall goal is to find an optimal set 𝐴∗	
  that solves the 
optimization problem 
 

coAuthor
(Kevin	Murphy,	
Xin	Luna	Dong)

workedAt
(Xin	Luna	Dong,	MIT)

workedAt
(Kevin	Murphy,	MIT)

livedIn
(Kevin	Murphy,	 Boston)

livedIn
(Xin	Luna	Dong,	Boston)

locatedIn
(MIT,	Boston)

[1]	coAuthor(X,Y)	 ^	workedAt(Y,Z)	 ->	workedAt(X,Z)

[2]	WorkedAt(X,Y)	 ^	locatedIn(Y,Z)	->	livedIn(X,Z)

[1]

[2][2]
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𝐴∗ = 𝑎𝑟𝑔max
u⊂w

𝑅 𝐴 	
  𝑠. 𝑡	
  𝑐 𝐴 ≤ 𝐵. 
 
where 𝐵 is a budget that can be spent for selecting nodes. 
 
This problem is NP-hard for most classes of reward and cost functions. We expect to utilize the 
methods learned in this report for improving upon this problem. 
 
CONCLUSION:  
In this report we introduced pi-CASTLE, a crowd-assisted SML-based IE system that can 
improve the accuracy of its automated results through a crowdsourced workforce.  We developed 
two information functions and a clustering heuristic to formulate the most information-dense 
questions to the crowd given a fixed budget. Our experiments showed order-of-magnitude 
performance increases for a given set of questions compared to baselines. 
 
While we focus on text extraction in the paper, we envision a more general Crowd-Assisted 
Machine Learning (CAMeL) system that uses a probabilistic database to efficiently connect and 
integrate crowdsourcing to improve the imperfect results from SML methods. Many of the core 
elements developed in pi-CASTLE such as uncertainty management, question selection, and 
human/machine integration are applicable to other SML-based tasks in the CAMeL framework. 
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